

Geologic Carbon Storage

February 2026

The Ontario government has introduced regulations to guide the safe and responsible management of carbon storage projects in the province. Capturing carbon dioxide (CO₂) and permanently storing it in geologic formations ("geologic carbon storage" or "carbon storage") can help industries in Ontario manage their emissions and help Ontario meet its emissions reduction targets.

Did you know?

According to the Global CCS Institute, the injection and storage of CO₂ "has been working safely and effectively for over 50 years" and "close to 300 million tonnes of CO₂ has been injected into storage formations underground."^[1]

Figure 1: A carbon storage injection well in Alberta, Canada, courtesy of Carbon Management Canada.

Ontario's regulatory framework

While carbon storage is new to Ontario, it is already being successfully implemented in other parts of Canada and around the world.

Ontario has been following a [roadmap](#) towards regulating this technology. The *Geologic Carbon Storage Act, 2025* came into force on January 1, 2026, and associated regulations are now in effect which will help ensure carbon storage projects are done responsibly, with measures in place to safeguard people and the environment.

This regulatory framework is key to realizing the potential benefits and managing the potential risks associated with geologic carbon storage, including minimizing the potential for leaks to the surface or drinking water sources, induced seismicity or interactions with other resource activities.

What is carbon storage?

Large quantities of CO₂ are generated through industrial processes such as the production of cement, steel and fertilizer, from power generation, during oil and gas refining, and as a by-product of creating hydrogen from natural gas.

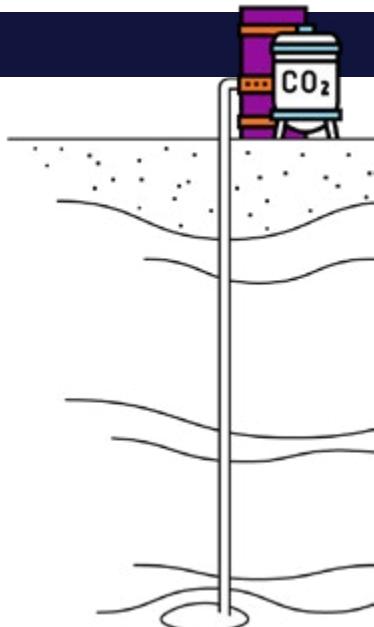
One way of reducing the impact of CO₂ emissions from these large emission sources is to take captured CO₂ that would have otherwise been emitted into the atmosphere and permanently store (sequester) it in deep underground rock formations (storage repository). This process is called geologic carbon storage, and can help to reduce and manage Ontario's emissions.

How to apply for carbon storage projects

Beginning February 1, 2026, applications for commercial-scale geologic carbon storage projects may be submitted to the Ministry of Natural Resources. Those interested in submitting applications for a carbon storage project can learn more by contacting CarbonStorage@ontario.ca or 519-873-4634.

Why is carbon storage necessary?

Geologic carbon storage is a necessary tool for economically achieving emissions targets and net-zero emissions, especially for carbon intensive industries.


Geologic carbon storage supports industry by encouraging innovation, managing emissions and helping to meet emissions targets. Development of commercial-scale carbon storage projects in Ontario could:

- support emissions reduction and the production of low-carbon hydrogen
- support the transition to a low-carbon economy
- preserve high-value jobs, attract investment and encourage innovation
- help businesses take advantage of federal incentives for carbon storage

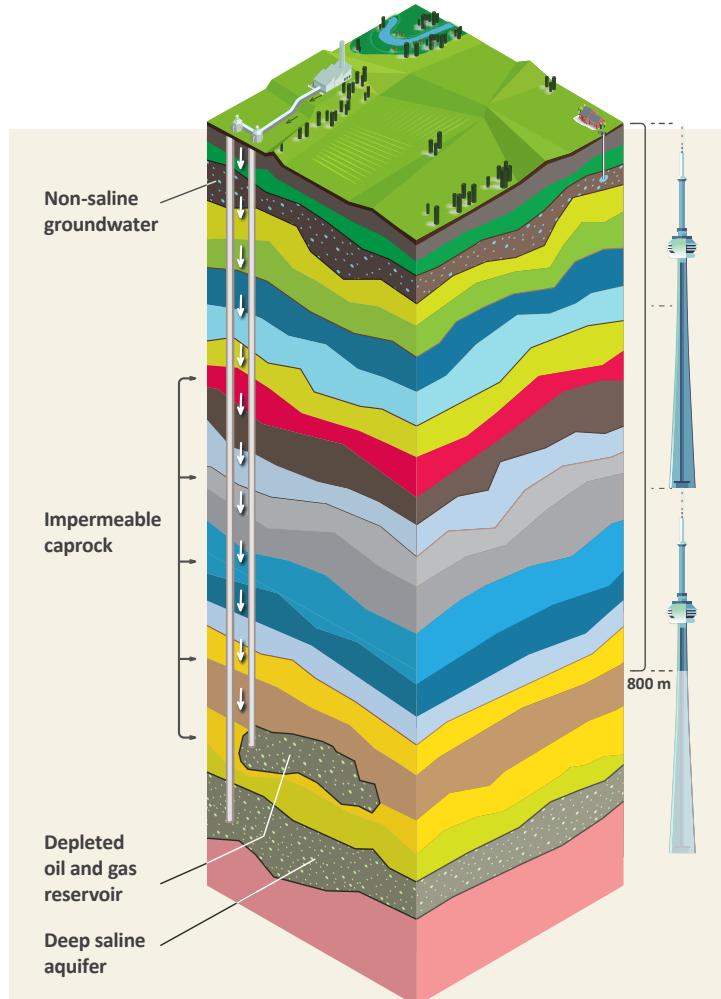
How is CO₂ stored?

Captured CO₂ emissions from industrial processes are injected into deep geologic formations through a storage well.

Detailed, site-specific studies need to be conducted to prove site suitability for geologic carbon storage.

Figure 2: Map illustrating suggested suitable storage formations in southwestern Ontario for carbon storage.

Depth is an important factor in geologic carbon storage. As depth increases below the surface, temperature and pressure increase. At depths greater than 800 metres (about 1.5 times the height of the CN Tower) temperature and pressure are high enough that CO₂ reaches a supercritical state – meaning it has the density of a liquid but flows like a gas – which allows the CO₂ to be stored efficiently^[2].


Underground storage formation characteristics are also important. The following technical requirements are considered when determining if a formation is a good fit for geologic carbon storage:

- **Porosity:** the pore space in which the CO₂ can be stored
- **Permeability:** the interconnectedness of the pore spaces that enables the injected CO₂ to flow throughout the formation
- **Cap rock:** the presence of an impermeable barrier to flow around the formation to contain the CO₂ permanently

What happens to the CO₂ after it is injected?

After CO₂ is injected, it becomes trapped in underground pore space and sealed by rock layers above the storage formation which prevent the upward movement of CO₂. Injected CO₂ can also dissolve into saline water that is present in the storage formation or react with rocks and fluids to form solid carbonate minerals underground.

After injection activities end, wells are plugged, and the site is decommissioned and monitored to mitigate any potential safety risks to the public or the environment.

Figure 3: Schematic diagram of geologic carbon storage in a depleted oil and gas reservoir and a deep saline aquifer. This diagram is for illustrative purposes only. Objects shown are not drawn to scale.

[More information about geologic carbon storage](https://ontario.ca/CarbonStorage) (ontario.ca/CarbonStorage).

Endnotes

- 1 [Global Carbon Capture and Storage Institute Ltd.](https://www.globalccsinstitute.com/ccs-101-storage/) <https://www.globalccsinstitute.com/ccs-101-storage/>. Used under Creative Commons Attribution-Noncommercial-NoDerivatives 4.0 International Licence. © 2024 Global Carbon Capture and Storage Institute Ltd
- 2 Carter, T., Gunter, W., Lazorek, M., Craig, R. (2007). Geological Sequestration of Carbon Dioxide: A Technology Review and Analysis of Opportunities in Ontario. Climate Change Research Report CCRR-07. Ontario Ministry of Natural Resources. ISBN 978-1-4249-4557-3